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Abstract— We propose a hierarchical reinforcement learning
(HRL) framework for efficient Navigation Among Movable
Obstacles (NAMO) using a mobile manipulator. Our approach
combines interaction-based obstacle property estimation with
structured pushing strategies, facilitating the dynamic ma-
nipulation of unforeseen obstacles while adhering to a pre-
planned global path. The high-level policy generates pushing
commands that consider environmental constraints and path-
tracking objectives, while the low-level policy precisely and
stably executes these commands through coordinated whole-
body movements. Comprehensive simulation-based experiments
demonstrate improvements in performing NAMO tasks, includ-
ing higher success rates, shortened traversed path length, and
reduced goal-reaching times, compared to baselines. Addition-
ally, ablation studies assess the efficacy of each component,
while a qualitative analysis further validates the accuracy and
reliability of the real-time obstacle property estimation.

I. INTRODUCTION

Robust robot navigation in complex environments is cru-

cial for applications ranging from delivery [1] to warehouse

automation [2]. While recent methods excel at collision

avoidance, they could fail when physical object manipulation

is necessary to create feasible paths, for instance, when

narrow passages are blocked by obstacles, as shown in Fig. 1.

Navigation Among Movable Obstacles (NAMO) research

addresses this challenge by enabling robots to manipulate ob-

jects (i.e., movable obstacles) to actively create navigable re-

gions. Conventional offline NAMO methods require complete

environmental knowledge, whereas recent online approaches

operate with minimal or without global information, such

as floor plans that only include large structures like walls,

to generate coarse global paths and dynamically respond to

encountered obstacles during navigation. (refer to Sec. II-A)

By leveraging the advancements in reinforcement learn-

ing (RL), some researchers in NAMO tasks have enhanced

decision-making processes for robots, enabling efficient navi-

gation while manipulating objects when necessary. However,

existing research overlooks physical attributes of movable

obstacles, such as mass, friction, and center of mass, which

are critical for effective manipulation. To address this lim-

itation, we adopt real-time property estimation approaches,

allowing robots to better understand and interact with ob-

jects. This integration enhances manipulation accuracy and

eventually improves navigation efficiency. (refer to Sec. II-B)
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Fig. 1: Whole-Body Mobile Manipulator Control for NAMO.
Illustration of the NAMO task, where the mobile manipulator fol-
lows a global path (red) while actively clearing a blocking obstacle
using whole-body coordinated motions. During the interaction, the
robot continuously tracks the global path with its base, while
simultaneously pushing the obstacle aside to clear the way using its
manipulator arm. The right sequence shows the interaction process
between the robot and the obstacle.

Furthermore, we employ hierarchical reinforcement learn-

ing (HRL) frameworks to manage the complexity of NAMO

tasks. By decoupling high-level decision-making from low-

level motor execution, HRL allows robots to generate strate-

gic commands, such as determining where to push a block-

ing obstacle with the manipulator’s end-effector, and how

quickly to move the base at a specific angle, as illustrated in

Fig. 1. These commands are then executed with precision

through a low-level controller. This hierarchical structure

not only streamlines the decision-making process but also

enables more efficient and adaptive behaviors in complex,

unstructured environments, resulting in improved overall

NAMO task performance. (refer to Sec. II-C)

In this work, our main contributions are threefold:

• A HRL framework that integrates mobile navigation with

obstacle manipulation using a seven degrees-of-freedom

(DOFs) mobile manipulator, the Fetch, to enable efficient

navigation in unstructured environments for NAMO tasks;

• An interaction-based property estimation module that fa-

cilitates adaptive interaction with diverse movable objects;

• Comprehensive simulation-based experiments demonstrat-

ing improved navigation performance, in terms of success

rates, path length, and goal-reaching times, along with

ablation studies assessing the effectiveness of each com-

ponent and qualitative analysis of the property estimation.



II. RELATED WORK

A. Navigation Among Movable Obstacles (NAMO)

NAMO represents robot navigation tasks in environments

where obstacles need to be physically manipulated to cre-

ate traversable paths toward goal locations. Traditional ap-

proaches [3]–[6] assume complete environmental knowledge,

including floor plans and detailed obstacle information (e.g.,

poses, geometries, movability), limiting their applicability

in dynamic and unexplored environments. To mitigate this

requirement, recent online methods [7]–[12] utilize approx-

imate global paths from coarse floor maps or even operate

with only local sensing information, dynamically responding

to unexpected obstacles during navigation toward goals.

Recent advancements in reinforcement learning (RL) have

enabled optimal decision-making in complex NAMO tasks

that require simultaneous navigation and object manipula-

tion [13], [14]. However, existing RL-based methods over-

look the physical properties of obstacles during interaction,

such as mass, friction, or center of mass, often resulting in

inaccurate manipulation and reduced navigation efficiency, as

shown in Sec. V. In contrast, we incorporate real-time prop-

erty estimation within our framework, improving obstacle

manipulation and ultimately enhancing navigation efficiency.

B. Interaction-Based Estimation of Object Properties

Accurate estimation of physical properties is essential for

various domains, including system simulation [15], legged

locomotion [16], and object manipulation [17]. Properties,

such as mass, center of mass, and friction, significantly

influence motion and interaction dynamics, making their

estimation crucial for effective robotic control. While some

objects have well-defined and predictable properties, real-

world environments often contain unknown or visually sim-

ilar objects with differing physical characteristics, requiring

robots to infer these properties through direct interaction.

In object manipulation, traditional analytical approaches

often struggle with real-world uncertainties and object vari-

ability [18]–[21]. To address these limitations, recent meth-

ods utilize large-scale interaction data and learning-based

inference for accurate and robust object property estima-

tion [22]–[24]. Building on these advancements, we incor-

porate property estimation into RL frameworks for NAMO

tasks, enabling more context-aware manipulation policies.

C. Hierarchical Reinforcement Learning

Hierarchical control structures simplify complex robotic

tasks by decoupling high-level decision-making from low-

level execution [25]–[30]. For instance, in navigation, high-

level controllers generate body velocity independent of the

robot’s specific embodiment [25]–[27]. Likewise, in manipu-

lation, high-level controllers determine interaction strategies,

such as motor skill selection [28] and sub-goal genera-

tion [29], [30], while low-level controllers execute high-level

commands to generate precise motions for completing tasks.

To resolve the complexity of NAMO tasks, we adopt the

hierarchical structure, where the high-level command space

is defined as a pushing command space (refer to Sec. IV-

B). The high-level controller generates pushing commands

to accurately track the planned global path while clearing an

obstacle through manipulation, and the low-level controller

translates the high-level pushing commands into coordi-

nated whole-body movements. Our hierarchical framework

enhances navigation efficiency compared to an end-to-end

structure, as exhibited in Sec. V.

III. VARIABLE NOTATION

This section defines the variable notation used throughout

this manuscript. Vectors p,v, and v̇ ∈ R
3 represent position,

velocity, and acceleration in Cartesian space. Orientation is

expressed using Euler angles in the XYZ convention as θ ∈
R

3, with ω and ω̇ ∈ R
3 denoting angular velocity and an-

gular acceleration, respectively. Alternatively, orientation can

be represented as a quaternion Q ∈ R
4. Subscripts indicate

entities or coordinate components, while superscripts denote

reference frames which are omitted when identical to the

body frame. We use the labels ‘b’, ‘o’, and ‘ee’ to refer to the

robot base, object, and end-effector frames, respectively. For

instance, pb
o denotes the position of an obstacle relative to the

robot’s base frame b, with pbo,x representing its x-component.

Manipulator joint states, including positions, velocities, and

accelerations, are defined as q, q̇, and q̈ ∈ R
7, corresponding

to the seven DOFs of the robotic arm. The obstacle’s size

along each axis is denoted by do = [do,x, do,y, do,z]. Finally,

a binary function is contact(·, ·) returns 1 if two entities are

in contact, and 0 otherwise.

IV. METHOD

We aim to enhance navigation efficiency in NAMO tasks

by enabling a mobile manipulator to push obstacles with

its arm while allowing its base to maintain adherence to

the global path and minimize deviations. To achieve this,

we introduce a hierarchical reinforcement learning (HRL)

framework that integrates object manipulation and navigation

through whole-body movements, as illustrated in Fig. 2.

A high-level controller selects an optimal pushing strategy

based on the environment and target destination, while a low-

level controller executes precise motions for effective object

manipulation. The following descriptions detail the problem

formulations and hierarchical controller components.

A. NAMO Task Formulation

We consider navigation in a known static map Mstatic

(i.e., floor plans) with movable obstacles whose locations

and physical properties are a priori unknown until detected

through local sensing—similar to how people rely on floor

plans to determine a rough path to their destination while

handling unexpected obstacles along the way. Given a goal,

the robot plans a global path P on the static map Mstatic,

ignoring unknown obstacles, and tracks the global path using

a mobile base PD controller. Meanwhile, upon encountering

the obstacle within a predefined distance (i.e., local sensing

range) that obstructs the path, the robot actively interacts

with the obstacle to clear the way while progressing toward
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Fig. 2: Training Framework. Our framework consists of two stages: (1) The low-level policy learns to execute whole-body actions
that achieve the commanded robot-obstacle kinematic configuration (i.e., pushing command) while maintaining stable contact to push
obstacles (refer to Sec. IV-B). An adaptive command sampling strategy is used to train the policy, enabling it to handle a broader range
of commands (Sec. IV-C.3). (2) The high-level policy is trained to generate pushing commands for low-level that guide the robot’s base
along the planned path while clearing obstacles, considering environmental factors. A history encoder is trained to estimate contact state
and obstacle properties from low-level observation histories (Sec. IV-D.2). The term ’obst.’ in the figure denotes ’obstacle’ for brevity.

the goal. We assume all encountered obstacles are movable

and cubic, with widths and depths between 0.5m and 0.8m,

heights ranging from 0.6m to 1.0m, and randomized physi-

cal properties—including mass, center of mass (CoM), and a

friction coefficient—introducing variability that necessitates

adaptive interaction strategies for effective manipulation.

B. Robot-Obstacle Pushing Commands

In our hierarchical framework, a high-level policy πh
φ de-

fines pushing strategies (i.e., commands), which a low-level

policy πl
ϕ executes via whole-body control. We represent

this strategy by defining the robot’s kinematic configuration

relative to the obstacle as a pushing command, which reg-

ulates obstacle motion through interaction and serves as the

interface between the high-level and low-level policies.

Incorporating full kinematic relationship—including all

positional and motion-related variables—into the command

space poses significant challenges, as the high-dimensional

space increases learning complexity and complicates kine-

matic feasibility validation. To address this, we select key

components that can simplify the command structure while

preserving essential aspects of robot-obstacle interaction.

Specifically, the pushing command c ∈ R
3 is composed

of three components: (pcmd, θcmd, vcmd), as depicted in

Fig. 3. Here, pcmd is lateral contact position on the obstacle’s

contact face; θcmd denotes the yaw angle of the obstacle’s

contact area relative to the robot’s frame; and vcmd indicates

the mobile base’s forward velocity during interaction.

While modeling the interaction-pushing command c in the

low-dimensional space may cause tilting or loss of contact,

the low-level controller, trained to account for these factors

by generating appropriate whole-body motions based on

the object’s physical properties, compensates by adaptive

movements, such as modifying contact height.

Robot Frame

Obstacle Frame

x-axis
y-axis
z-axis

Cubic shape
with various size

Fig. 3: Pushing Command. The pushing command consists of
pcmd, θcmd, and vcmd, shown in red in the figure. pcmd specifies
the contact point on the obstacle contact face as pcmd

· do,y along
the obstacle’s y-axis. θcmd is the yaw angle of the contact face
relative to the robot frame. vcmd denotes the robot’s base linear
velocity.

C. A Low-Level Policy

The low-level policy πl
ϕ enables the robot to execute

whole-body movements for satisfying pushing commands

c, dynamically adapting to object tilting while maintaining

stable contact through its end-effector. The following de-

scription details the RL formulation for the low-level policy.

1) Problem Formulation: We formulate the obstacle-

pushing problem as a Markov Decision Process (MDP),

represented by the tuple (S,A, T ,R, ρ0, γ), where S denotes

the state space, A the action space, T : S × A → S the

state transition function, and R : S × A → R the reward

function. The term ρ0 represents the initial state distribution,

and γ ∈ [0, 1) is the discount factor. The objective of RL is

to maximize the expected cumulative reward, given by:

J(ϕ) = E
ct∼P (c)

[

E(s,a)∼πl
ϕ

[

T
∑

t=0

γtRl(st,at|ct)

]]

(1)



TABLE I: Reward Functions for Rl
= R

cmd
+R

stable
+R

areg

Reward Function Expression

Command Tracking Rewards: Rcmd =
∑

2

i=0
rcmd
i

rcmd
0

kl
0
exp(−2 |pcmd − poee,y/do,y | / 0.1)

rcmd
1

kl
1
exp(−|θcmd − θbarea,z | / 0.1)

rcmd
2

kl
2
exp(−2 |vcmd − vb,x| / 0.1)

Obstacle Stability Rewards: Rstable =
∑

4

i=0
rstable
i

rstable
0

kl
3
is contact (ee, obstacle)

rstable
1

kl
4
(1− tanh(2 cos−1

(∣

∣

∣
Qb−1

ee · Qb
o

∣

∣

∣

)

/ 0.1))

rstable
2

−kl
5
is contact(base, obstacle)

rstable
3

−kl
6
tanh (|θbo,y | / 0.1)

rstable
4

−kl
7
(||v̇bo,x||2 + ||v̇bo,y ||2)

Action Regularization Rewards: Rareg =
∑

2

i=0
r

areg
i

r
areg
0

−kl
8
||q̈||2

r
areg
1

−kl
9
||v̇b||2

r
areg
2

−kl
10

||at − at−1||2

• Rl: a reward function for a low-level policy (refer to Sec. IV-C)
• θbarea,z : a yaw angle of an obstacle’s contact face in a robot frame

• kl
0,1,...,10: non-negative coefficients

where ϕ denotes the low-level policy parameters to be

optimized, and ct represents commands sampled at each

time step t from an adaptively updated command distribution

P (c). Please refer to Sec. IV-C.3 for this update procedure.

At the start of each episode, the robot joints are initialized

to a predefined configuration, and the obstacle is randomly

placed at a fixed distance from the robot’s base.

2) A Policy & Reward Functions: The low-level policy

πl
ϕ receives as input the vector [ol, c,x], where ol represents

the low-level observation. This observation is structured as

[q, vb,x, ωb,z,p
b
ee,θ

b
ee,p

b
o,θ

b
o,do,at−1]. The pushing com-

mand is given by c, while the privileged information x

consists of [is contact(ee, obstacle), mo, CoMo, µo], in-

cluding the contact state between the end-effector and the

obstacle, along with the obstacle’s physical properties. Prop-

erty ranges and descriptions are detailed in TABLE II. During

training, ground-truth privileged information is used, whereas

deployment relies on estimated values, as mentioned in

Sec. IV-D.2. The low-level reward function Rl consists of

three main terms: command tracking rewards Rcmd which en-

courages adherence to the command; stability rewards Rstable

which maintains contact and prevents obstacle rollover; and

action regularization rewards Rareg which discourages exces-

sive motion. Maintaining contact is crucial, as inconsistent

forces can lead to obstacle tilting or slipping, resulting in

unstable interactions [31]–[33]. TABLE I provides detailed

formulations. We omit the time step t notation hereafter.

The action at ∈ R
8, comprising six dimensions for the

arm and two for the base, is generated by the policy. The

arm action is defined by the desired twist of the end-effector

[v, ω]ree ∈ R
6, which is converted into joint velocities using

a differential inverse kinematics (IK) controller [34], result-

ing in joint velocities q̇, used to update the joint positions

at each time step as q+ q̇ ·∆T . The base action is defined

as [vb,x, ωb,z] ∈ R
2, reflecting the base’s differential-drive

kinematics, which naturally use linear and angular velocities

to describe planar motion. Both arm and base actions are then

sent to joint impedance controllers for torque computation.

TABLE II: Obstacle Physical Properties Ranges and Descriptions

Term (dim.) Range (Unit) Description

mo (1) (5.0, 30.0) (kg) obstacle mass

CoMo (3) (-0.4, 0.4) (−) shifted obstacle CoM

µo (1) (0.2, 0.6) (−) obstacle kinetic friction coefficient

• An obstacle CoM is set to CoMo»do, where » indicates element-
wise multiplication and do denotes the obstacle size.

• During evaluation, these parameter ranges are expanded by 10%.

3) Adaptive Command Sampling: Learning over a large

command space from scratch is challenging. While push-

ing an obstacle’s center is straightforward, handling varied

contact positions introduces complexity. Sampling from an

excessively large command space may yield kinematically

infeasible commands, hindering learning. To address this,

we adopt a grid adaptation rule [35], which progressively

expands the command sampling range for pcmd and θcmd

within the pushing command space c. The velocity compo-

nent vcmd maintains a fixed sampling range, allowing the

policy to focus more on interaction-related parameters. The

sampling range updates based on command tracking rewards

rcmd
i . When all rewards exceed their thresholds γi (i =
0, 1, 2), the command space expands, and the probability

distribution is updated as follows:

PN+1(p
cmd, θcmd⊕∆) =

{

1
|A∪∆|UA∪∆, if ∀ri > γi,

PN (pcmd, θcmd), otherwise,
(2)

where N is the episode number and ⊕ represents the

Minkowski sum, expanding the command space by incorpo-

rating neighboring regions. A and ∆ refer to the command

space before expansion and the newly added region, respec-

tively, with UA∪∆ representing a uniform distribution over

the expanded space A ∪∆.

D. A High-Level Policy

The high-level policy πh
φ generates optimal pushing com-

mands c, allowing the robot’s base to follow the planned path

with minimal deviation while actively clearing obstacles with

its arm and base motions. It also considers environmental

constraints, including structures around the robot in the static

map Mstatic, to recognize where the obstacle can be pushed.

The following is the RL formulation of the high-level policy.

1) Problem Formulation: We formulate the pushing com-

mand generation problem as an MDP for decision-making,

where the RL policy aims to maximize the expected cumu-

lative reward, similar to the low-level policy’s objective:

J(φ) = E(st,ct)∼πh
φ

[

T
∑

t=0

γtRh(st, ct | π
l
ϕ)

]

. (3)

Unlike the low-level policy, which directly outputs robot

actions, the high-level policy generates pushing commands

ct, executed by the low-level policy πl
ϕ. During high-level

policy training, the low-level policy remains frozen.

2) Privileged Knowledge Distillation: Efficient obstacle

pushing requires accurate knowledge of physical properties

and the current contact state, which are typically considered

privileged information. As they are generally unavailable



TABLE III: Reward Functions for Rh
= R

path
+R

safe
+R

creg

Reward Function Expression

Path Tracking Rewards: Rpath =
∑

2

i=0
r

path
i

r
path
0

kh
0
exp(−|θb

g0,z
| / 0.1)

r
path
1

kh
1
exp(−|(1− vb,x / vmax

b,x
)| / 0.1)

r
path
2

kh
2
I (mini |di| > dthr ' sign(di) = sign(d1), ∀i)

Safe Operation Rewards: Rsafe =
∑

1

i=0
rsafe
i

rsafe
0

−kh
3
is contact(base,Mstatic)

rsafe
1

−kh
4
is contact(obstacle,Mstatic)

Command Regularization Rewards: Rcreg =
∑

1

i=0
r

creg
i

r
creg
0

Rstable +Rareg

r
creg
1

−kh
5
||ct − ct−1||2

• Rh: a reward function for a high-level policy (refer to Sec. IV-D)
• kh

0,1,...,5: non-negative coefficients

• I: an indicator returning 1 if the condition is met, and 0 otherwise.
• di(i = 0, ..., 3): distances from the vector connecting the robot

base to the local goal g1 to each ground-contacting corner of the
obstacle; sign indicates the corner’s side relative to this vector

• dthr: a clearance threshold for the base to move without collision

during deployment, we train a network ex online during

high-level policy training to estimate both contact states and

obstacle physical properties based on the low-level obser-

vation history. The network learns to predict this privileged

information using the following loss function:

Ladap = Lcontact + Lprop, (4)

where Lcontact represents the Binary Cross-Entropy (BCE)

loss for contact prediction and Lprop denotes the Mean

Squared Error (MSE) loss for physical property estimation.

Training ex using low-level observation history, where

high- and low-level policies rely on ground truth privileged

information to generate policy outputs, poses challenges

during deployment due to data distribution shifts. In early

interactions, the estimated privileged information x̂ is highly

uncertain, causing deviations from trained behavior. This dis-

crepancy alters observations and induces distribution shifts

between training and deployment. To mitigate this issue,

we adopt a progressive integration strategy that gradually

transitions policies from using x to relying entirely on x̂.

During training, the privileged input xcomb is defined as:

xcomb = (1− α) · x + α · x̂, (5)

where α increases linearly from 0 to 1 over the course of

training. Initially, x provides stable supervision for policy

optimization under ideal conditions. As training progresses,

reliance on x̂ increases, allowing the policy to adapt to

deployment conditions and align the training and deployment

distributions.

3) A Policy & Reward Functions: The high-level policy

takes a vector [oh,ol, xcomb] as input. The high-level ob-

servation oh includes lmap, an encoded representation of

the local map Mlocal, which is extracted from Mstatic and

processed through the map encoder el. The local map covers

a 4 × 4m2 area centered 2m ahead of the robot base, with

a resolution of 0.05m per pixel. Additionally, oh contains

upcoming local goals g0, g1, and g2, indicating 2D positions

(x, y) on the planned path P at 0.5m, 1.0m, and 2.0m

TABLE IV: Network Architectures and Input-Output Specifications

NN. Hidden Layers Inputs (dim.) Outputs

πl
ϕ [256, 128, 64] ol(32) | x(6) | c(3) a(8)

πh
φ

[256, 128, 64] oh(25) | ol(32) | xcomb(6) c(3)

ex LSTM + [128, 64, 32] ol(32) x̂(6)

el CNN + [128, 64. 32] Mlocal(80× 80) lmap(16)

ahead, along with the last executed command ct−1. The

high-level reward function Rh comprises three components:

path tracking rewards Rpath which rewards the robot for

following local goals and relocating obstacles beyond the

clearance threshold dthr; safe operation rewards Rsafe which

penalizes unintended collision with static structures; and

command regularization rewards Rcreg which discourages

abrupt changes in commands. Detailed reward formulations

are provided in TABLE III.

E. Training Details

We employed Isaac Sim [36] for training, utilizing 1,024

parallel environments. We updated policies at 50 Hz, while

we operated joint impedance control at 100 Hz. We used the

Differential IK controller with the Damped Least Squares

(DLS) method and a damping factor λ = 0.02. We initial-

ized command ranges as (pcmd, θcmd)init = (±0.1,±0.2)
and expanded them incrementally by ∆ = (±0.05,±0.1),
restricting linear velocity command ranges to (0.1, 0.4) m/s.
We set command tracking reward thresholds to γ0,1,2 =
[0.6, 0.6, 0.5]. We empirically found best-performing reward

weights as kli=0,...,10 = [1.0, 1.0, 0.8, 1.5, 1.5, 102, 0.3, 3 ×
10−3, 10−3, 3 × 10−3, 3 × 10−3] for the low-level policy

and khi=0,...,5 = [1.0, 0.8, 102, 102, 102, 0.2] for the high-level

policy. We set the clearance threshold dthr to 0.35 m, and we

set vmax
b,x to 0.4 m/s. We optimized both policies using the

Proximal Policy Optimization (PPO) algorithm [37]. TABLE

IV provides network architecture details.

TABLE V: Low-Level Command Tracking Errors and Contact Rate

pcmd error
(-) (³)

θcmd error
(rad) (³)

vcmd error
(m/s) (³)

Contact Rate
(%) (↑)

LL-P
0.129 ±

0.041
0.169 ±

0.065
0.079 ±

0.027
89.219 ±

8.935

LL+P
0.055 ±

0.029
0.122 ±

0.059
0.049 ±

0.027
96.708 ±

2.621

• P: Privileged information (refer to Sec. V-A)

V. EXPERIMENTS

We conducted two simulation experiments to evaluate our

approach: (1) analyzing the impact of privileged information

on low-level policy performance and (2) assessing navigation

performance in NAMO tasks across varying obstacle densities

measured by success rate, path length, and completion time.

A. Effect of Privileged Information on Low-Level Policy

To assess the impact of privileged information on low-

level policy performance, we compared policies trained with

(LL+P) and without (LL-P) privileged information. TABLE

V presents tracking errors for each pushing-command term

and the consistency of maintaining contact with the obstacle.



TABLE VI: Navigation Among Movable Obstacles (NAMO) Experimental Results on Map 1 and Map 2

Methods SR (%) (↑) SPL (-) (↑) SCT (-) (↑)

Map 1 (evaluation with random obstacle numbers of 2, 4, and 6, presented in that order)

CA 92.00 / 72.00 / 52.00 84.43 / 63.86 / 44.23 77.94 / 56.59 / 37.82

AA [11] 96.00 / 89.33 / 78.67 88.61 / 80.81 / 69.35 82.38 / 71.99 / 60.59

Ours-P 86.67 / 74.00 / 64.67 85.41 / 71.09 / 62.09 85.25 / 67.35 / 55.80

Ours-H 94.00 / 84.67 / 76.00 90.81 / 81.63 / 73.46 91.16 / 78.10 / 73.46

Ours 96.67 / 91.33 / 85.33 93.39 / 88.38 / 82.62 95.89 / 88.26 / 80.28

Ours+G 96.67 / 92.00 / 87.33 93.53 / 89.12 / 84.64 95.86 / 89.12 / 81.96

Map 2

CA 94.00 / 88.00 / 80.00 85.97 / 78.03 / 68.36 75.75 / 66.99 / 57.18

AA [11] 95.33 / 89.33 / 84.67 87.56 / 81.36 / 75.43 77.44 / 70.32 / 62.53

Ours-P 88.67 / 84.67 / 76.67 87.53 / 83.37 / 75.56 84.71 / 78.12 / 67.93

Ours-H 82.00 / 70.67 / 57.33 80.81 / 69.55 / 56.43 78.35 / 65.18 / 50.97

Ours 98.67 / 96.67 / 92.67 97.70 / 95.79 / 91.42 96.80 / 92.74 / 86.79

Ours+G 98.67 / 97.33 / 94.67 97.69 / 96.43 / 93.83 96.76 / 93.36 / 89.18

• SR: success rate, SPL: success-weighted path length (see Eq. 6), SCT: success-weighted completion time (see Eq. 7).

Map 2Map 1

Goal Goal

13m 13m

11
m

11
m

Fig. 4: Evaluation Maps. These maps are distinct from the training
environments, with fixed start and goal positions. The red line
represents the planned path P , computed using the A* algorithm.
The bottom row illustrates example configurations for each map
with 4 and 6 obstacles.

The LL+P policy exhibits improved command adherence,

with reduced tracking errors across all command dimensions.

Specifically, lower pcmd, θcmd, and vcmd errors demonstrate

enhanced precision in executing high-level commands, en-

suring more reliable robot-obstacle interaction. In addition,

it maintains more stable and prolonged contact with the

obstacle, reinforcing consistent interaction. These results

validate that privileged information improves both control

accuracy and interaction stability.

B. Navigation Efficiency in Cluttered Environments

1) Experiment Settings: We evaluated the navigation ef-

ficiency of our method on two maps, each with 2, 4, and

6 obstacles strategically placed to interfere with the planned

global path, as shown in Fig. 4. For each map and obstacle

count setting, we conducted 150 trials. In each experiment,

obstacle properties are randomly assigned within the ranges

specified in TABLE IV. The start and goal positions are

fixed, and the global path P is computed using the A*

algorithm [38], considering only static walls while ignoring

movable obstacles. During navigation, if the robot encounters

an obstacle within 1.5m that obstructs the path, our method

uses the proposed policies to push it aside. Once the obstacle

is cleared—its clearance exceeds the threshold dthr—the

robot reverts to tracking its planned path using base move-

ments. This process continues until the robot either reaches
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Fig. 5: Navigation Efficiency for Success Cases. Travel length and
completion time are evaluated for successful trials across methods,
measured under varying obstacle counts. Ours achieves consistently
shorter distances and times with lower variance, demonstrating
stable and efficient performance across all cases.

the goal or fails according to predefined criteria described

below.

2) Baselines and Metrics: We established the following

baselines along with our method’s variants:

• Collision Avoidance (CA): Re-plans paths iteratively

to avoid obstacles without physical interaction.

• Axis-Aligned Pushing (AA) [11]: Re-plans paths with

a straight-line pushing strategy, aligning the robot’s base

with the obstacle’s axis to clear the obstructed path.

• Ours w/o Privileged Information (Ours-P): Trains

hierarchical policies without privileged information.

• Ours w/o Hierarchical Structure (Ours-H): Trains

a single policy end-to-end that directly generates low-

level actions at (refer to Sec. IV-C.2), omitting hierar-

chical structure interconnected via pushing commands.

• Ours: Uses the hierarchical structure along with push-

ing commands and estimated privileged information in

both high- and low-level policies (refer to Sec. IV).
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Fig. 6: Qualitative Results on Map 1. The top-row figures shows
the planned path P and the robot’s traces for CA, AA, and Ours,
where CA fails to find a feasible path around the second obstacle,
resulting in task failure. The below figures present the privileged in-
formation estimated by Ours during obstacle interactions alongside
ground-truth values. Shaded gray regions indicate periods when the
robot is not in contact with the obstacle.

• Ours w/ GT Privileged Information (Ours+G): Uses

ground-truth privileged information instead of estimated

values through the network ex (refer to Sec. IV-D.2).

To quantify navigation efficiency, we used three metrics:

Success Rate (SR) is the percentage of trials in which the

robot successfully reaches the goal. A trial is considered a

failure if the robot exceeds a predefined time limit or if an

obstacle collides with a wall or tips over. In the case of CA,

failure additionally occurs when it cannot find a feasible path.

Success-Weighted Path Length (SPL) [39] measures path

efficiency by balancing optimality and success, defined as:

SPL =
1

N

N∑

i=1

Si

L∗
i

max(Li, L
∗
i )
, (6)

where Si denotes success, L∗
i the optimal path length,

and Li the actual path length. Similarly, Success-Weighted

Completion Time (SCT) [40] evaluates time efficiency:

SCT =
1

N

N∑

i=1

Si

T ∗
i

max(Ti, T
∗
i )

, (7)

where T ∗
i is the optimal completion time, and Ti is the

actual completion time. The optimal values L∗
i and T ∗

i are

determined from navigation in an obstacle-free environment.

3) Analysis of Results: TABLE VI presents the naviga-

tion performance across baseline methods. Our approach

(Ours), integrating interaction-based obstacle property es-

timation and the hierarchical structure, consistently out-

performs the baselines, particularly in environments with

a high number of obstacles. CA frequently fails to find

feasible paths in settings with many obstacles, resulting

in a low success rate. Its avoidance-based strategy results

in longer trajectories, reducing navigation efficiency. AA

improves upon CA but lacks adaptability, as it ignores

obstacle physical properties, leading to failed or unintended

interactions. Additionally, its reliance on base-only pushing

introduces redundant movements, further lowering efficiency

(see Fig. 6). Ours-P, which does not estimate obstacle prop-

erties, exhibits significantly lower success rates and reduced

efficiency compared to Ours, underscoring the importance

of incorporating obstacle properties for adaptive manipu-

lation. Ours-H, which removes the hierarchical structure,

struggles with inefficient and ineffective learning due to the

large search space, converging into suboptimal solutions and

leading to poorer navigation performance, consistent with

findings in [41]. Ours+G, which uses ground-truth privileged

information, predictably achieves the highest performance,

serving as the upper bound for our approach. Through the

small performance gap between Ours and Ours+G, it can

be inferred that Ours accurately estimates the necessary

privileged information for efficient obstacle manipulation.

Fig. 6 shows a qualitative result confirming the accuracy

of Ours, as it reliably estimates obstacle properties in real

time while tracking the planned global path with minimal

deviation. This experiment confirms that integrating property

estimation with a hierarchical policy framework enhances

robustness and efficiency in NAMO tasks.

Fig. 5 presents an analysis of navigation efficiency based

on travel length and completion time for successful trials

in each experimental case. CA and AA result in longer

travel distances with high variance, indicating frequent de-

tours and inefficient obstacle interactions, respectively. In

contrast, Ours consistently achieves shorter travel lengths

and completion times across all obstacle densities, with min-

imal variance, demonstrating robust and efficient navigation.

These results confirm that Ours not only enhances success

rates but also improves efficiency across diverse cluttered

environments, validating the effectiveness of our approach.

For a more intuitive understanding of the experimental re-

sults, please refer to the accompanying supplementary video

which demonstrates the obstacle manipulation process.

VI. CONCLUSION

We proposed a hierarchical reinforcement learning (HRL)

framework for online Navigation Among Movable Obsta-

cles (NAMO) using a mobile manipulator with a 7-DOFs

robotic arm. Our approach integrates interaction-based ob-

stacle property estimation with structured pushing strategies,

where the high-level policy generates pushing commands,

and the low-level policy facilitates accurate and stable ex-

ecution. Our extensive evaluations confirm that the pro-

posed approach significantly enhances navigation efficiency

compared to baseline methods. Although our method has

shown promising results, it currently assumes cubic-shaped,

movable obstacles. To address such an assumption, future

work will extend object geometries to diverse shapes, such



as cylinders and general objects like chairs, and explore

environments with both movable and immovable obstacles.

We also aim to evaluate real-world robustness, considering

sensor noise and sim-to-real gaps.
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